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Abstract--Data consistency is big issue while using NoSQL 
Cloud data stores. They ensure scalability and high 
availability properties for web applications, but while 
providing these they sacrifice data consistency. Some available 
applications cannot afford data inconsistency. To achieve Data 
consistency in multi-item transactions on web applications, 
CloudTPS is best solution. CloudTPS acts as a scalable 
transaction manager which guarantees full ACID properties 
for multi-item transactions on web applications. It does not 
depend on the presence of server failures and network 
partitions. There is no effect of failures and network partitions 
on functionality of CloudTPS. HBase and Hadoop provides 
scalable data layers. Hence we perform this approach on top 
of this scalable data layers.  

Keywords—Scalability, Web applications, cloud computing, 
transactions, NoSQL. 

I. INTRODUCTION 
HBase and Hadoop are NoSQL cloud database 

services which provide a scalable data tier for applications 
deployed in the cloud. These available systems partition the 
application data to provide additional scalability and 
reproduce the partitioned data to tolerate server failures [1]. 
Cloud computing provides vision of a virtually infinite pool 
of computing, storage and networking resources, in which 
we can deploy scalable applications. 

A transaction is a set of queries to be executed on 
a single consistent view of a database. The main challenge 
for transactions is to provide the ACID properties of 
Atomicity, Consistency, Isolation and Durability without 
negotiating the scalability properties of the cloud. 
However, the elemental cloud data storage services provide 
only conditional consistency [1].  

Any centralized transaction manager would look 
at two scalability problems: 1) A single transaction 
manager must execute all incoming transactions and would 
finally become the performance and availability barrier; 2) 
A single transaction manager must control a copy of all 
data accessed by transactions and would finally run out of 
storage space. To support scalable transactions, we propose 
to split the transaction manager into any number of Local 
Transaction Managers (LTMs) and to partition the 
application data and the load of transaction processing 
across LTMs [2]. 

CloudTPS adventure three properties of Web 
applications to allow efficient and scalable operations. 
First, we observe that in Web applications, all transactions 
are short-term because each transaction is covered in the 
processing of a particular request from a user. Second, Web 

applications contribute to issue transactions that interval a 
relatively small number of well-identified data items. This 
means that the commit protocol for any given transaction 
can be restricted to a relatively small number of servers 
holding the accessed data items. Third, many read-only 
queries of Web applications can produce useful results by 
accessing an older still persistent version of data. This 
allows execution of complex read queries directly in the 
cloud data service, rather than in LTMs. 

We must have to consider two important issues to 
handle CloudTPS conveniently: 

1) There is large availability of different types of
cloud services. CloudTPS must have to be portable across 
available cloud services. Current cloud data services use 
different data models and interfaces but proposed system 
constructs CloudTPS depending on their common features. 
Our method is implemented using key-value pairs. Our 
implementation claims a simple primary-key-based 
"GET/PUT" interface from cloud data services. 

2) Loading of a whole copy of application into
systems memory may overflow memory of LTM's. This 
will result into one application may use several LTMs 
according to their storage capacity. This is not necessary 
condition that only latest accessed items maintain ACID 
properties. If we retrieve current stored versions of 
unaccessed data items, then they can be ejected  from the 
LTMs. Web applications describes temporary locations 
where only some portion of data is actually accessed at any 
time. To ensure robust data consistency, we can construct 
active memory management scheme to reduce the number 
of in-memory data items in LTMs [1]. 

CloudTPS must have to maintain the ACID 
properties even in the case of server breakdowns. For this, 
we reproduce data items and transaction states to multiple 
LTMs, and annually checkpoint consistent data snapshots 
to the cloud storage service. Consistency correctness 
depends on the final consistency and high availability 
properties of Cloud computing storage services 
[3].CloudTPS supports both read-write and read-only 
transactions.We check out our prototype in a workload 
developed from the TPC-W e-commerce benchmark [9]. 
We applied CloudTPS on the top of Hbase and Hadoop, 
which is scalable data layer. CloudTPS tolerates server 
break downs, which results into a few aborted transactions 
and a temporary decrease in throughput while transaction 
recovery and data reorganization. Dealing with network 
separations, CloudTPS may refuse incoming transactions to 
manage data consistency. As soon as, the network is 
rebuilds, transactions are recovered and becomes available. 
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 II. RELATED WORK 
A. Data Storage 
 Simplest technique to store structured data in to 
cloud is to deploy a relational database such as MySQL or 
Oracle. The relational data model enforced through the 
SQL language, results into great flexibility in accessing 
data. It supports practical data access operations such as 
aggregation, range queries, join queries, etc. Person can 
efficiently deploy a classical RDBMS in the cloud and thus 
get support for transactional consistency. These flexible 
query language and robust data consistency avoids 
partitioning of data, which introduce scalability. These 
systems depends on reproduction techniques and therefore 
do not deliver extra scalability improvement compared to a 
non-cloud deployment. 
 Some cloud database services as Bigtable, 
SimpleDB, uses abridged data models based consisting 
attribute-value pairs. All application data is arranger into 
tables. Data items of the tables are generally accessed 
through “GET/ PUT” interface. All operations are restricted 
to performed within table, none of them supports 
operations across multiple tables such as join queries.  
These system allows any number of tables to separate 
application data [5]. 
  
B. Distributed Transactional Systems 
 Large number of research efforts have been 
actively applying to distributed transactions for distributed 
database systems. Different types of commit protocols and 
concurrency control mechanisms are invented to cultivate 
the ACID properties of distributed transactions. Still, some 
distributed database make use of RDBMS. They lack in 
scalability as they are unable to separate application data 
automatically.  But we can use 2-Phase Commit (2PC) for 
assuring Atomicity and on timestamp-ordering to maintain 
concurrency control. 
 H-Store is a distributed main memory OLTP 
database. It supports transactions accessing multiple data 
records with SQL semantics, applied as predefined stored 
procedures. It reproduce data records to tolerate machine 
failures. H-Stores scalability depends on the data separation 
across executor nodes. H-Store does not maintain constant 
logs or keep any data in the non-volatile storage of either 
the executor nodes or any backing store. CloudTPS 
checkpoints return updates back to the cloud data services 
to assure durability for each transaction [2]. 
 Another system is  the Scalaris transactional DHT 
system. It distribute data across any number of DHT nodes. 
It provides access to any data items by using primary key. 
It do not support durability for stored data as it is purely an 
in-memory system. CloudTPS results into durability for 
transactions by check pointing data updates into the cloud 
data service. Scalaris depends on the Paxos transactional 
algorithm, which can address Byzantine failures, but results 
into high costs for each transaction. 
 Google Percolator implements multirow ACID 
transactions on top of Bigtable. To administrate transaction 
management, Percolator applies Bigtable as a shared 
memory for all instances of its client-side library [6]. The 
data updates and transaction administration information, as 

locks and primary node of a transaction, are straightly 
written into Bigtable. Percolator can atomically perform 
many actions on a single row using single rows transactions 
of Bigtable such as lock a data item and mark the primary 
node of the transaction. In adverse, CloudTPS continue 
with the data updates, transaction states and queue of 
transactions all in the memory of LTMs. The basic cloud 
data store does not participate in the transaction 
administration. LTMs checkpoint data updates back to the 
cloud data store only after the transaction has been 
committed.  The design differences of CloudTPS and 
Percolator arise from their distinct focuses. CloudTPS 
targets response-time sensitive Web applications, while 
Percolator is designed for incremental processing of 
massive data processing tasks which typically have a 
relaxed latency requirement. 

  
 III. PROPOSED SYSTEM 

 Following figure shows the complete organization 
of CloudTPS. 

 
 Fig 1: organization of CloudTPS system 

 Clients concern HTTP requests to a Web 
application, which consecutively concern transactions to a 
Transaction Processing System (TPS).  The TPS be adjunct 
with any number of LTMs, each of which is authoritative 
for a subset of all data items.  The Web application can 
submit a transaction to any one LTM that is authoritative 
for one of the accessed data items.  This LTM then acts as 
the administrator of the transaction across all LTMs. Then 
LTM act on an inmemory copy of the entire data items 
which gets loaded from the cloud storage service. Updates 
of data transactions are placed in memory of LTMs. To 
avoid data loss resulting from breakdown of LTM server, 
the data updates are clone to multiple LTM servers. LTMs 
also regularly checkpoint the updates back to the cloud 
storage service which is considered to be highly-available 
and constant. 
 We applied transactions using the 2-Phase 
Commit protocol. In the very first phase, the administrator 
requests all involved LTMs and check whether the 
operation can easily executed correctly or not.  If working 
of LTMs is proper, then second phase starts. In reality, 
second phase commits the transaction.   Otherwise, the 
transaction is interrupted. Most of all cloud transactions are 
of short duration and can access well analyzed data items 
only. CloudTPS confess only server side transactions 
carried out as predefined procedures stored at all LTMs. 
Each transaction consists of one or more sub-transactions, 
which operate on a single data item each. When it issues a 
transaction, the application must provide the primary keys 
of all accessed data items. 
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 Generally, a transaction is carried out as a Java 
object containing a list of sub-transaction instances. All 
sub-transactions are implemented as sub-classes of the Sub 
Transaction abstract Java class. Each sub-transaction 
consists of a unique class name to identify itself, a table 
name and primary key, input parameters. Already bytecode 
of all sub-transactions is deployed at all LTMs. A Web 
application concern a transaction by submitting the names 
of included sub-transactions and their parameters. LTMs 
then build up the corresponding sub-transaction instances 
to execute the transaction. 
 We first cluster data items into virtual nodes, and 
then attach virtual nodes to LTMs. This results into 
balanced assignment of virtual nodes to LTMs. Multiple 
virtual nodes can be allowed to the same LTM for 
transactions. To permit LTM break downs, virtual nodes 
and transaction states are duplicated to one or more LTMs.  
After the LTM server failure, the current updates can then 
be reborned and damaged transactions can continue 
execution while satisfying ACID properties. 
 We now structure the design of the TPS to assure 
the Atomicity, Consistency, Isolation and Durability 
properties. Each of the properties is discussed individually 
as follows: 
  
1. Atomicity 
 When either all operations of a transactions are 
successfully executed or when none of them is executed 
then the property atomicity results out. CloudTPS carried 
out two-phase commit across all the LTMs which are 
chargeable for all data items accessed to assure atomicity 
for each transactions. The transaction administrator can 
concurrently return the result to the web application and 
complete the second phase, when an agreement to 
“COMMIT” is arrived [1].If the server break downs then 
all transactions states and all data items must have to reflect 
on one or more LTMs.LTMs reproduce the data items to 
keep backup of LTMs while execution of the second phase 
of transaction.When second phase completes execution 
successfully duplicates of   the accessed data items are 
becomes consistent. 
2. Consistency 
 The condition for consistent property is that when 
a transaction executes on an internally consistent database 
then it should leave the database in consistent stage. The 
term Consistency is commonly defined as a set of 
informative integrity constraints.  So when transactions are 
completed correctly, the Consistency property is fulfilled 
[1]. 
3. Isolation 
 The isolation property results out when the 
behavior of a transaction is not changed by the existence of 
other transaction which also simultaneously access the 
same data items simultaneously. CloudTPS is responsible 
for the breaking down of the transaction into it’s of sub-
transactions.  If two transactions accessing the same data 
items then their sub transactions must be executed in 
sequence, even if the sub-transactions are executed on 
multiple LTMs simultaneously. For that we use timestamp 
ordering to regulate transactions on LTMs. Each 

transaction has its universal exclusive timestamp order 
number. Sub transactions having lower timestamp ordering 
are executed first than sub transactions having younger 
timestamp ordering. The case may arise where processing 
of a transaction gets slow, and that a conflicting sub-
transaction having younger timestamp has committed 
already. In such case, earlier transaction will interrupted, 
gets new timestamp order number and then starts re-
execution [1].  
4. Durability 
 Durability property arises when outcomes of the 
transactions cannot be accomplished and must have to 
exists when server breakdowns. Updates of all data of 
committed transactions must be written to the backend 
cloud storage service. Main problem is to support LTM 
break down without dropping data.Straightforwardly, the 
commit operation of a transaction does not update data in 
the cloud storage service but only update data in-memory, 
to increase performance. All data items get saved in to 
LTMs. Time period between commit operation of a 
transaction and upcoming checkpoints assures durability 
property by reproducing data items on different LTMs [1].  
  

 IV. RESULTS AND ANALYSIS 
 We perform evaluations on top of Hbase 0.20.6 
and Hadoop v0.20.2. We use Tomcat Apache v6.0.41 as 
application server to evaluate CloudTPS performance. We 
expose the scalability of CloudTPS by evaluating the 
performance of a prototype implementationon top of two 
different families of scalabledata layers: HBase and 
Hadoop running on cloud.We demonstrate that proposed 
CloudTPS can conveniently reconstruct from server break 
down and network separation by considering throughput of 
CloudTPS under break downs.We also achieve scalability 
evaluation by calculatingthe maximum feasible throughput 
of the system including given number of LTMs before the 
constraintgets breach.  
 At beginning stage, we start with one LTM and 5 
HBase servers and then we increase the number of LTM 
and HBase servers. Under certain number of EB's, we 
perform one round of the evaluation for 30 minutes to 
calculate the performance of the system. In all cases, we 
purposely allocate more number of HBase servers and 
client machines to assure performance barrier of the 
CloudTPS [6]. Fig 2 shows the efficient response time. 
  

 
Fig 2: Graph for average Response time for Client 

Transactions 
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 Performance of web server metrics depends on 
two things as the HTTP bytes/sec data and CPU utilization. 
By knowing the HTTP bytes/sec data, we can easily 
calculate the Mbytes/sec or Mbits/sec network traffic for 
each server and CPU.  Consider a case where  2 processor 
Web Server running at 87% CPU utilization with a HTTP 
bytes/sec value of 4,160,450,  one can calculate, (4,160,450 
/ (1024*1024)), a network throughput rate of 3.96 
Mbytes/sec or 31.7 Mbits/sec assists by the 2P Web Server 
at 87% utilization. One can easily find if the web servers 
has any huge headroom’s or web server is configured near 
its maximum capabilities [8]. 
 Fig 3 and Fig 4 shows scalability illustrations by 
calculating throughput. 

 
Fig 3: Graph for Total System Throughput 

 
Fig 4: Graph for Throughput under Write Operation 

  
 The number of emulated users supported by each 
web Server is calculated by The Number of Users / Number 
of Web Servers. To protect the duration of the user session, 
the TPC-W benchmark allows keep-alive connections. 
Contribution of Keep-alive connections is to curtail the 
CPU overhead required to process a connection. Each user 
perceives one protected and one non-protected connection, 
thus we can calculate total number of connections 
supported by a web Server by 2 * (Number of Browsers / 
Web Servers). For example given a result of 4,800 WIPS 
with 30,000 emulated browsers in a configuration of 15 
Web Servers, each Web Server is supporting 2 * (30,000 / 
15)= 4,000 internet connections [9]. 
 We can divide Web Server network traffic and 
keep-alive connections by total number of processors is 
server to get the network traffic per processor and the 
number of supported connections per processor. This result 
is very advantageous during comparison of different Web 
Server processors or comparison of web Servers with 

different number of processors. Emulated Browsers (EB’s) 
generates data by creating and populating six tables. EB’S 
are the emulated browsers which is simulated to client by 
sending the request through http [7].Table shown below 
describes the performance analysis of client transactions 
which evaluated by Emulated Browsers. 

Sr.No 
Average 
response 
time 

Average 
accessed 
item 

Total 
numb
er of 
transa
ctions 

Tot
al 
resp
ons
e 
time 

Tot
al 
acce
ssed 
item 

updateItemInf
o 

1.3731343
28358209 

1.0 67 92 67 

DeleteCartLin
e 

2.1789473
68421052
7 

2.0 95 207 190 

getShoppingC
art 

3.1363636
36363636
2 

7.0530303
03030303 

528 
165
6 

372
4 

getShortOrder 
30.222429
90654205
7 

11.115887
85046729 

535 
161
69 

594
7 

RefreshCartLi
ne 

4.0337078
65168539 

1.3679775
28089887
6 

356 
143
6 

487 

NewShopping
Cart 

8.9411764
70588236 

1.0 34 304 34 

getItemAndA
uther 

1.3729433
27239488
2 

2.0 547 751 
109
4 

getOrder 
18.411167
51269035
5 

7.0 591 
108
81 

413
7 

getShoppingC
art_inPurchas
e 

3.2058823
52941176
6 

9.8235294
11764707 

34 109 334 

Purchase 
42.235294
11764706 

18.088235
29411765 

34 
143
6 

615 

getCustomer 
8.8371647
50957854 

4.0 522 
461
3 

208
8 

getRelatedIte
m 

1.0584905
66037736 

2.0 530 561 
106
0 

updateRelated
ItemInfo 

2.3636363
63636363
8 

2.9696969
69696969
7 

66 156 196 

 Table 1: Overview of client transactions for 
performance analysis log generated by EB’S 

  
 Following table 2 and figure 5 shows the overall 
cluster analysis of the proposed system.Table 2 illustrates 
the average access time, domain write time, time latency 
and time slice by considering several client transactions. 
  
Domain Access Time 25.678391959798994 ms 

Process Time 11.233855185909981 ms 
Total throughput 14.44453677388901 ms 
Domain Write Time 11.233855185909981 ms 
Write Latency 10 ms  
Time Slice 10 ms  

Table 2: Cluster Analysis 
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Fig 5: Cluster Analysis 

  
 V. CONCLUSION 

 For correct execution, products need strong data 
consistency. Cloud provide good platform to host web 
content to achieve high scalability and availability. 
Proposed scheme provides ACID transactions without 
negotiating the scalability property of the cloud for Web 
applications. This work depends on few simple logics. 
First, we load data into the transactional layer from the 
cloud storage system. Secondly, we can split the data 
across any number of LTMs, and reproduce them only for 
fault tolerance. Web applications can access only few 
partitions of data in any transactions, which results into 
CloudTPS linear scalability. Even in the presence of server 
failures and network partitions, CloudTPS supports full 
ACID properties. Recovering from a failure only causes a 
temporary drop-in throughput and a few aborted 
transactions.  Recovering from a network partition may 
possibly cause temporary unavailability of CloudTPS. Data 
partitioning also mentioned that transactions can only 
access data by primary key. CloudTPS allows Web 
applications with strong data consistency demands to be 
scalable deployment in the cloud. This means Web 
applications in the cloud do not need to compromise 
consistency for scalability. 
 
 
 

 FUTURE SCOPE 
 Hadoop has become backbone of big data 
platforms but holds different, sophisticated architecture as 
compared to DBMS. Hadoop must have to combine with 
realtime extensive data collection and transmission which 
results into faster processing of data. Sometimes Hadoop 
hides some complex background while providing concise 
user interface which causes poor performance of system. 
So, we can implement advance interface similar to DBMS 
to enhance performance of Hadoop from each and every 
angle.  Large-scale Hadoop cluster includes very huge 
number of servers which are mainly responsible for energy 
consumption. Hadoop should be widely deployed 
depending on energy efficiency. In the era of big data, the 
terms as privacy and security has lots of importance. The 
big data platform should find a good balance between 
enforcing data access control and facilitating data 
processing. 
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