
Scalable Transactions for Web Applications in the
Cloud using Customized CloudTPS

Shashikant Mahadu Bankar

Department of Computer science and Engineering GECA,
Dr Babasaheb Ambedkar Marathwada university Auranagabad, India

Abstract--Data consistency is big issue while using NoSQL
Cloud data stores. They ensure scalability and high
availability properties for web applications, but while
providing these they sacrifice data consistency. Some available
applications cannot afford data inconsistency. To achieve Data
consistency in multi-item transactions on web applications,
CloudTPS is best solution. CloudTPS acts as a scalable
transaction manager which guarantees full ACID properties
for multi-item transactions on web applications. It does not
depend on the presence of server failures and network
partitions. There is no effect of failures and network partitions
on functionality of CloudTPS. HBase and Hadoop provides
scalable data layers. Hence we perform this approach on top
of this scalable data layers.

Keywords—Scalability, Web applications, cloud computing,
transactions, NoSQL.

I. INTRODUCTION
HBase and Hadoop are NoSQL cloud database

services which provide a scalable data tier for applications
deployed in the cloud. These available systems partition the
application data to provide additional scalability and
reproduce the partitioned data to tolerate server failures [1].
Cloud computing provides vision of a virtually infinite pool
of computing, storage and networking resources, in which
we can deploy scalable applications.

A transaction is a set of queries to be executed on
a single consistent view of a database. The main challenge
for transactions is to provide the ACID properties of
Atomicity, Consistency, Isolation and Durability without
negotiating the scalability properties of the cloud.
However, the elemental cloud data storage services provide
only conditional consistency [1].

Any centralized transaction manager would look
at two scalability problems: 1) A single transaction
manager must execute all incoming transactions and would
finally become the performance and availability barrier; 2)
A single transaction manager must control a copy of all
data accessed by transactions and would finally run out of
storage space. To support scalable transactions, we propose
to split the transaction manager into any number of Local
Transaction Managers (LTMs) and to partition the
application data and the load of transaction processing
across LTMs [2].

CloudTPS adventure three properties of Web
applications to allow efficient and scalable operations.
First, we observe that in Web applications, all transactions
are short-term because each transaction is covered in the
processing of a particular request from a user. Second, Web

applications contribute to issue transactions that interval a
relatively small number of well-identified data items. This
means that the commit protocol for any given transaction
can be restricted to a relatively small number of servers
holding the accessed data items. Third, many read-only
queries of Web applications can produce useful results by
accessing an older still persistent version of data. This
allows execution of complex read queries directly in the
cloud data service, rather than in LTMs.

We must have to consider two important issues to
handle CloudTPS conveniently:

1) There is large availability of different types of
cloud services. CloudTPS must have to be portable across
available cloud services. Current cloud data services use
different data models and interfaces but proposed system
constructs CloudTPS depending on their common features.
Our method is implemented using key-value pairs. Our
implementation claims a simple primary-key-based
"GET/PUT" interface from cloud data services.

2) Loading of a whole copy of application into
systems memory may overflow memory of LTM's. This
will result into one application may use several LTMs
according to their storage capacity. This is not necessary
condition that only latest accessed items maintain ACID
properties. If we retrieve current stored versions of
unaccessed data items, then they can be ejected from the
LTMs. Web applications describes temporary locations
where only some portion of data is actually accessed at any
time. To ensure robust data consistency, we can construct
active memory management scheme to reduce the number
of in-memory data items in LTMs [1].

CloudTPS must have to maintain the ACID
properties even in the case of server breakdowns. For this,
we reproduce data items and transaction states to multiple
LTMs, and annually checkpoint consistent data snapshots
to the cloud storage service. Consistency correctness
depends on the final consistency and high availability
properties of Cloud computing storage services
[3].CloudTPS supports both read-write and read-only
transactions.We check out our prototype in a workload
developed from the TPC-W e-commerce benchmark [9].
We applied CloudTPS on the top of Hbase and Hadoop,
which is scalable data layer. CloudTPS tolerates server
break downs, which results into a few aborted transactions
and a temporary decrease in throughput while transaction
recovery and data reorganization. Dealing with network
separations, CloudTPS may refuse incoming transactions to
manage data consistency. As soon as, the network is
rebuilds, transactions are recovered and becomes available.

 Shashikant Mahadu Bankar/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2187-2191

www.ijcsit.com 2187

 II. RELATED WORK
A. Data Storage
 Simplest technique to store structured data in to
cloud is to deploy a relational database such as MySQL or
Oracle. The relational data model enforced through the
SQL language, results into great flexibility in accessing
data. It supports practical data access operations such as
aggregation, range queries, join queries, etc. Person can
efficiently deploy a classical RDBMS in the cloud and thus
get support for transactional consistency. These flexible
query language and robust data consistency avoids
partitioning of data, which introduce scalability. These
systems depends on reproduction techniques and therefore
do not deliver extra scalability improvement compared to a
non-cloud deployment.
 Some cloud database services as Bigtable,
SimpleDB, uses abridged data models based consisting
attribute-value pairs. All application data is arranger into
tables. Data items of the tables are generally accessed
through “GET/ PUT” interface. All operations are restricted
to performed within table, none of them supports
operations across multiple tables such as join queries.
These system allows any number of tables to separate
application data [5].

B. Distributed Transactional Systems
 Large number of research efforts have been
actively applying to distributed transactions for distributed
database systems. Different types of commit protocols and
concurrency control mechanisms are invented to cultivate
the ACID properties of distributed transactions. Still, some
distributed database make use of RDBMS. They lack in
scalability as they are unable to separate application data
automatically. But we can use 2-Phase Commit (2PC) for
assuring Atomicity and on timestamp-ordering to maintain
concurrency control.
 H-Store is a distributed main memory OLTP
database. It supports transactions accessing multiple data
records with SQL semantics, applied as predefined stored
procedures. It reproduce data records to tolerate machine
failures. H-Stores scalability depends on the data separation
across executor nodes. H-Store does not maintain constant
logs or keep any data in the non-volatile storage of either
the executor nodes or any backing store. CloudTPS
checkpoints return updates back to the cloud data services
to assure durability for each transaction [2].
 Another system is the Scalaris transactional DHT
system. It distribute data across any number of DHT nodes.
It provides access to any data items by using primary key.
It do not support durability for stored data as it is purely an
in-memory system. CloudTPS results into durability for
transactions by check pointing data updates into the cloud
data service. Scalaris depends on the Paxos transactional
algorithm, which can address Byzantine failures, but results
into high costs for each transaction.
 Google Percolator implements multirow ACID
transactions on top of Bigtable. To administrate transaction
management, Percolator applies Bigtable as a shared
memory for all instances of its client-side library [6]. The
data updates and transaction administration information, as

locks and primary node of a transaction, are straightly
written into Bigtable. Percolator can atomically perform
many actions on a single row using single rows transactions
of Bigtable such as lock a data item and mark the primary
node of the transaction. In adverse, CloudTPS continue
with the data updates, transaction states and queue of
transactions all in the memory of LTMs. The basic cloud
data store does not participate in the transaction
administration. LTMs checkpoint data updates back to the
cloud data store only after the transaction has been
committed. The design differences of CloudTPS and
Percolator arise from their distinct focuses. CloudTPS
targets response-time sensitive Web applications, while
Percolator is designed for incremental processing of
massive data processing tasks which typically have a
relaxed latency requirement.

 III. PROPOSED SYSTEM

 Following figure shows the complete organization
of CloudTPS.

 Fig 1: organization of CloudTPS system

 Clients concern HTTP requests to a Web
application, which consecutively concern transactions to a
Transaction Processing System (TPS). The TPS be adjunct
with any number of LTMs, each of which is authoritative
for a subset of all data items. The Web application can
submit a transaction to any one LTM that is authoritative
for one of the accessed data items. This LTM then acts as
the administrator of the transaction across all LTMs. Then
LTM act on an inmemory copy of the entire data items
which gets loaded from the cloud storage service. Updates
of data transactions are placed in memory of LTMs. To
avoid data loss resulting from breakdown of LTM server,
the data updates are clone to multiple LTM servers. LTMs
also regularly checkpoint the updates back to the cloud
storage service which is considered to be highly-available
and constant.
 We applied transactions using the 2-Phase
Commit protocol. In the very first phase, the administrator
requests all involved LTMs and check whether the
operation can easily executed correctly or not. If working
of LTMs is proper, then second phase starts. In reality,
second phase commits the transaction. Otherwise, the
transaction is interrupted. Most of all cloud transactions are
of short duration and can access well analyzed data items
only. CloudTPS confess only server side transactions
carried out as predefined procedures stored at all LTMs.
Each transaction consists of one or more sub-transactions,
which operate on a single data item each. When it issues a
transaction, the application must provide the primary keys
of all accessed data items.

 Shashikant Mahadu Bankar/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2187-2191

www.ijcsit.com 2188

 Generally, a transaction is carried out as a Java
object containing a list of sub-transaction instances. All
sub-transactions are implemented as sub-classes of the Sub
Transaction abstract Java class. Each sub-transaction
consists of a unique class name to identify itself, a table
name and primary key, input parameters. Already bytecode
of all sub-transactions is deployed at all LTMs. A Web
application concern a transaction by submitting the names
of included sub-transactions and their parameters. LTMs
then build up the corresponding sub-transaction instances
to execute the transaction.
 We first cluster data items into virtual nodes, and
then attach virtual nodes to LTMs. This results into
balanced assignment of virtual nodes to LTMs. Multiple
virtual nodes can be allowed to the same LTM for
transactions. To permit LTM break downs, virtual nodes
and transaction states are duplicated to one or more LTMs.
After the LTM server failure, the current updates can then
be reborned and damaged transactions can continue
execution while satisfying ACID properties.
 We now structure the design of the TPS to assure
the Atomicity, Consistency, Isolation and Durability
properties. Each of the properties is discussed individually
as follows:

1. Atomicity
 When either all operations of a transactions are
successfully executed or when none of them is executed
then the property atomicity results out. CloudTPS carried
out two-phase commit across all the LTMs which are
chargeable for all data items accessed to assure atomicity
for each transactions. The transaction administrator can
concurrently return the result to the web application and
complete the second phase, when an agreement to
“COMMIT” is arrived [1].If the server break downs then
all transactions states and all data items must have to reflect
on one or more LTMs.LTMs reproduce the data items to
keep backup of LTMs while execution of the second phase
of transaction.When second phase completes execution
successfully duplicates of the accessed data items are
becomes consistent.
2. Consistency
 The condition for consistent property is that when
a transaction executes on an internally consistent database
then it should leave the database in consistent stage. The
term Consistency is commonly defined as a set of
informative integrity constraints. So when transactions are
completed correctly, the Consistency property is fulfilled
[1].
3. Isolation
 The isolation property results out when the
behavior of a transaction is not changed by the existence of
other transaction which also simultaneously access the
same data items simultaneously. CloudTPS is responsible
for the breaking down of the transaction into it’s of sub-
transactions. If two transactions accessing the same data
items then their sub transactions must be executed in
sequence, even if the sub-transactions are executed on
multiple LTMs simultaneously. For that we use timestamp
ordering to regulate transactions on LTMs. Each

transaction has its universal exclusive timestamp order
number. Sub transactions having lower timestamp ordering
are executed first than sub transactions having younger
timestamp ordering. The case may arise where processing
of a transaction gets slow, and that a conflicting sub-
transaction having younger timestamp has committed
already. In such case, earlier transaction will interrupted,
gets new timestamp order number and then starts re-
execution [1].
4. Durability
 Durability property arises when outcomes of the
transactions cannot be accomplished and must have to
exists when server breakdowns. Updates of all data of
committed transactions must be written to the backend
cloud storage service. Main problem is to support LTM
break down without dropping data.Straightforwardly, the
commit operation of a transaction does not update data in
the cloud storage service but only update data in-memory,
to increase performance. All data items get saved in to
LTMs. Time period between commit operation of a
transaction and upcoming checkpoints assures durability
property by reproducing data items on different LTMs [1].

 IV. RESULTS AND ANALYSIS
 We perform evaluations on top of Hbase 0.20.6
and Hadoop v0.20.2. We use Tomcat Apache v6.0.41 as
application server to evaluate CloudTPS performance. We
expose the scalability of CloudTPS by evaluating the
performance of a prototype implementationon top of two
different families of scalabledata layers: HBase and
Hadoop running on cloud.We demonstrate that proposed
CloudTPS can conveniently reconstruct from server break
down and network separation by considering throughput of
CloudTPS under break downs.We also achieve scalability
evaluation by calculatingthe maximum feasible throughput
of the system including given number of LTMs before the
constraintgets breach.
 At beginning stage, we start with one LTM and 5
HBase servers and then we increase the number of LTM
and HBase servers. Under certain number of EB's, we
perform one round of the evaluation for 30 minutes to
calculate the performance of the system. In all cases, we
purposely allocate more number of HBase servers and
client machines to assure performance barrier of the
CloudTPS [6]. Fig 2 shows the efficient response time.

Fig 2: Graph for average Response time for Client

Transactions

 Shashikant Mahadu Bankar/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2187-2191

www.ijcsit.com 2189

 Performance of web server metrics depends on
two things as the HTTP bytes/sec data and CPU utilization.
By knowing the HTTP bytes/sec data, we can easily
calculate the Mbytes/sec or Mbits/sec network traffic for
each server and CPU. Consider a case where 2 processor
Web Server running at 87% CPU utilization with a HTTP
bytes/sec value of 4,160,450, one can calculate, (4,160,450
/ (1024*1024)), a network throughput rate of 3.96
Mbytes/sec or 31.7 Mbits/sec assists by the 2P Web Server
at 87% utilization. One can easily find if the web servers
has any huge headroom’s or web server is configured near
its maximum capabilities [8].
 Fig 3 and Fig 4 shows scalability illustrations by
calculating throughput.

Fig 3: Graph for Total System Throughput

Fig 4: Graph for Throughput under Write Operation

 The number of emulated users supported by each
web Server is calculated by The Number of Users / Number
of Web Servers. To protect the duration of the user session,
the TPC-W benchmark allows keep-alive connections.
Contribution of Keep-alive connections is to curtail the
CPU overhead required to process a connection. Each user
perceives one protected and one non-protected connection,
thus we can calculate total number of connections
supported by a web Server by 2 * (Number of Browsers /
Web Servers). For example given a result of 4,800 WIPS
with 30,000 emulated browsers in a configuration of 15
Web Servers, each Web Server is supporting 2 * (30,000 /
15)= 4,000 internet connections [9].
 We can divide Web Server network traffic and
keep-alive connections by total number of processors is
server to get the network traffic per processor and the
number of supported connections per processor. This result
is very advantageous during comparison of different Web
Server processors or comparison of web Servers with

different number of processors. Emulated Browsers (EB’s)
generates data by creating and populating six tables. EB’S
are the emulated browsers which is simulated to client by
sending the request through http [7].Table shown below
describes the performance analysis of client transactions
which evaluated by Emulated Browsers.

Sr.No
Average
response
time

Average
accessed
item

Total
numb
er of
transa
ctions

Tot
al
resp
ons
e
time

Tot
al
acce
ssed
item

updateItemInf
o

1.3731343
28358209

1.0 67 92 67

DeleteCartLin
e

2.1789473
68421052
7

2.0 95 207 190

getShoppingC
art

3.1363636
36363636
2

7.0530303
03030303

528
165
6

372
4

getShortOrder
30.222429
90654205
7

11.115887
85046729

535
161
69

594
7

RefreshCartLi
ne

4.0337078
65168539

1.3679775
28089887
6

356
143
6

487

NewShopping
Cart

8.9411764
70588236

1.0 34 304 34

getItemAndA
uther

1.3729433
27239488
2

2.0 547 751
109
4

getOrder
18.411167
51269035
5

7.0 591
108
81

413
7

getShoppingC
art_inPurchas
e

3.2058823
52941176
6

9.8235294
11764707

34 109 334

Purchase
42.235294
11764706

18.088235
29411765

34
143
6

615

getCustomer
8.8371647
50957854

4.0 522
461
3

208
8

getRelatedIte
m

1.0584905
66037736

2.0 530 561
106
0

updateRelated
ItemInfo

2.3636363
63636363
8

2.9696969
69696969
7

66 156 196

 Table 1: Overview of client transactions for
performance analysis log generated by EB’S

 Following table 2 and figure 5 shows the overall
cluster analysis of the proposed system.Table 2 illustrates
the average access time, domain write time, time latency
and time slice by considering several client transactions.

Domain Access Time 25.678391959798994 ms

Process Time 11.233855185909981 ms
Total throughput 14.44453677388901 ms
Domain Write Time 11.233855185909981 ms
Write Latency 10 ms
Time Slice 10 ms

Table 2: Cluster Analysis

 Shashikant Mahadu Bankar/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2187-2191

www.ijcsit.com 2190

Fig 5: Cluster Analysis

 V. CONCLUSION

 For correct execution, products need strong data
consistency. Cloud provide good platform to host web
content to achieve high scalability and availability.
Proposed scheme provides ACID transactions without
negotiating the scalability property of the cloud for Web
applications. This work depends on few simple logics.
First, we load data into the transactional layer from the
cloud storage system. Secondly, we can split the data
across any number of LTMs, and reproduce them only for
fault tolerance. Web applications can access only few
partitions of data in any transactions, which results into
CloudTPS linear scalability. Even in the presence of server
failures and network partitions, CloudTPS supports full
ACID properties. Recovering from a failure only causes a
temporary drop-in throughput and a few aborted
transactions. Recovering from a network partition may
possibly cause temporary unavailability of CloudTPS. Data
partitioning also mentioned that transactions can only
access data by primary key. CloudTPS allows Web
applications with strong data consistency demands to be
scalable deployment in the cloud. This means Web
applications in the cloud do not need to compromise
consistency for scalability.

 FUTURE SCOPE
 Hadoop has become backbone of big data
platforms but holds different, sophisticated architecture as
compared to DBMS. Hadoop must have to combine with
realtime extensive data collection and transmission which
results into faster processing of data. Sometimes Hadoop
hides some complex background while providing concise
user interface which causes poor performance of system.
So, we can implement advance interface similar to DBMS
to enhance performance of Hadoop from each and every
angle. Large-scale Hadoop cluster includes very huge
number of servers which are mainly responsible for energy
consumption. Hadoop should be widely deployed
depending on energy efficiency. In the era of big data, the
terms as privacy and security has lots of importance. The
big data platform should find a good balance between
enforcing data access control and facilitating data
processing.

 REFERENCES
[1] Zhou Wei, Guillaume Pierre, Chi-Hung Chi, “CloudTPS: Scalable

Transactions for web applications in the cloud”, IEEE Transactions
on Services Computing, Special Issue on Cloud Computing, 2011.

[2] B. Hayes, “Cloud computing,” Communications of the ACM, vol. 51
, no. 7, pp. 9–11, Jul. 2008.

[3] Transaction Processing Performance Council, “TPC benchmark C
standard specification, revision 5,” December 2006,
http://www.tpc.org/tpcc/.

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51–59, 2002.

[5] HBase, “An open-source, distributed, column-oriented store modeled
after the Google Bigtable paper,” 2006, http://hadoop.
apache.org/hbase/.

[6] Amazon.com, “EC2 elastic compute cloud,” 2010,
http://aws.amazon.com/ec2.

[7] Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web
applications in the cloud,” in Proc. Euro-Par, 2009.

[8] W. Vogels, “Data access patterns in the Amazon.com technology
platform,” in Proc. VLDB, Keynote Speech, 2007.

[9] D. A. Menasce, “TPC-W: A benchmark for e-commerce,” IEEE
Internet Computing, vol. 6, no. 3, 2002.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable : a
distributed storage system for structured data,” in Proc. OSDI, 2006.

[11] S. Das, D. Agrawal, and A. E. Abbadi, “Elastras: An elastic
transactional data store in the cloud,” in Proc. HotCloud, 2009.

 Shashikant Mahadu Bankar/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2187-2191

www.ijcsit.com 2191

